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ABSTRACT

We present first results from a comprehensive investigation into the distribution of luminosity within
the 50 brightest cosmic gamma-ray bursts detected by the Burst and Transient Source Experiment
(BATSE). The internal luminosity function _,(L) is defined such that the quantity O(L)dL represents the
fraction of total emission time during which the burst possesses a luminosity between L and L + dL. For
these brightest bursts, the q_(L) functions are quasi power-law-like and decrease in amplitude with
increasing luminosity. Through investigation of both individual if(L) distributions and data from the
ensemble of bursts, we demonstrate a high probability for correlation between the shape of the internal

luminosity function as measured by the average logarithmic slope and the burst duration as measured by
the Tgo parameter and, with lower significance, between the shape of qJ(L) and the burst photon-fluence

spectral index. We furthermore demonstrate a correlation between burst hardness ratio and duration in
these brightest bursts which is opposite to that of the entire gamma-ray burst ensemble.

Subject headings: gamma rays: bursts

l. INTRODUCTION

The brightness distribution of cosmic gamma-ray bursts
that is observed with the Burst and Transient Source

Experiment (BATSE) (Fishman et al. 1989; Horack 1991)
contains information pertaining to both the radial distribu-
tion of the burst sources and the distribution of bursts' peak
luminosities. We have learned with BATSE that the dis-

tribution of bright bursts is consistent with a population of
objects distributed homogeneously throughout Euclidean
space, while at lower brightnesses the distribution deviates
from homogeneity and there is a paucity of weak bursts.
This behavior is attributed to an inhomogeneous dis-
tribution of burst sources or to cosmological effects
(Meegan et al. 1992). Often these data are presented in inte-
gral form, with brightness P along the ordinate and the
total number of bursts exceeding a certain brightness
vU( > P) along the abscissa.

Mathematically, the integral brightness distribution can
be represented for a Euclidean distribution of sources as

(" _: ('(L/gne)tJ2

.U(>P) = 4hi q_(L)| n(r)r2drdL, (1)
dO do

where n(r) is the volume number density of burst sources
and _b(L) is the distribution of peak burst luminosities. The
upper limit of integration on the r integral reflects the fact
that bursts having a given peak luminosity L will be
observed with peak brightness larger than P only if their
distance is less than the value (L/4nP) 1t2. From equation (1)
it is easy to demonstrate that in the case where n(r) is a
constant, the integral brightness distribution will display a
logarithmic slope of -3/2, regardless of the bursts' peak
luminosity function _b(L).

The measure of brightness adopted for use in the integral
brightness distribution is that of the peak burst flux, mea-
sured in units of photons cm-: s-1 in the energy range

50-300 keV over a predetermined time interval of either
0.064, 0.256, or 1.024 s. By studying the distribution of peak
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burst brightnesses, one can learn about the peak lumi-
nosities of the detected bursts.

Indeed, in recent years a number of papers have appeared
in the literature dealing with the properties of the burst
peak luminosity distribution qS(L), parameterized as a
power law with a variety of spectral indices. Horack,
Emslie, & Meegan (1994) demonstrate that in the context of
a Euclidean distribution of sources, 80% of the bursts

detected by BATSE possess peak luminosities that span a
range of 12 or less, regardless of the particular form of n(r)
or logarithmic slope of the _b(L} function. Ulmer & Wijers
(1995) utilize a different analysis technique to obtain a con-
sistent result. By incorporating bursts detected by the
Pioneer Venus Orbiter spacecraft, Ulmer, Wijers, & Feni-
more (1995) further restrict this range of luminosity, confin-
ing 90% of the detected bursts to a peak luminosity range of

5 or less.

Hakkila et al. (1995, 1996) demonstrate that while the
range of luminosity for the detected bursts is indeed narrow,
there are three general classes of peak luminosity functions
that can satisfy the constraints imposed by the BATSE
brightness distribution. Two of these allow formally infinite
ranges of peak luminosity. The first of these is the so-called
Lm_,-dominated case, where the peak luminosity function
_b(L) is allowed to range from some finite lower limit Lmi, to
infinity but must have a logarithmic slope steeper (less) than
- 2.5. In this case, most of the detected bursts are located in

a narrow range just slightly above the value Lmi n. The
second case is the Lmax-dominated case, where the peak
luminosity function is constrained to be nonzero only below
a maximum limiting value Lmax and can only have a
logarithmic slope that is shallower (greater) than - 1.8. In
this scenario most of the detected bursts possess lumi-
nosities just slightly less than Lma X. The third case consists
of peak luminosity distributions with logarithmic slope
between - 1.8 and - 2.5. Hakkila et al. (1995, 1996) demon-

strate that these _b(L) must possess a finite Lmax/Lmin, again
with a majority of the detected bursts confined to a narrow
range of peak luminosities. Horack et al. (1996) demonstrate
that these results can be obtained analytically and that the
limiting logarithmic slopes found in Hakkila et al. (1995,
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1996)forthepeakluminositydistributionaresimplyacon-
sequenceofthemaximumandminimumlogarithmicslopes
displayedbytheBATSEpeakbrightnessdistribution.

Eachof thesestudiesdealswiththedistributionof peak
luminosities.Insofarastheyexplorethephysicsof the
burstermechanism,theythereforerelateonlytotheburstat
oneparticulartimein itsevolution,thetimeat whichthe
luminosityisamaximum.However,burstprofilesarequite
complexandvarysignificantlybetweenbursts.It ispossible
thatourunderstandingof theburstsmaybefurtheredby
studyingtheburstenergyoutputthroughouteachof the
burstevents,ratherthanbyexaminingtheensembledis-
tributionobtainedbyselectingeachdetectedburstat its
peakenergyproductionrate.Wethereforepresentherethe
firstresultsof ourstudyinto theinternalluminositydis-
tributionof gamma-raybursts.To explicitlydistinguish
betweenthepeakluminositydistributionandtheinternal
luminositydistribution,wedenotethelatterfunctionas
q_(L), whereas the peak luminosity distribution is denoted as
_b(L).

9. DEFINING THE INTERNAL LUMINOSITY DISTRIBUTION

¢(L)

The internal luminosity distribution is measured from the
burst time profile. In principle, the quantity _b(L)dL rep-
resents the fraction of time during which the burst possesses
a luminosity between L and L + dL. In practice, since the
distance to any burst remains unknown, the scaling of
the luminosity will not be absolute. We adopt the BATSE
0.064 s discriminator science (DISCSC) count-rate data
(e.g., Horack 1991) as the data of choice for computing the
internal luminosity distribution, and we confine ourselves
to the energy range of 50-300 keV. Thus our raw data used
to compute the distribution possess the instrumental units
of counts s t rather than the physical units of photons s- 1
To utilize physical units requires the adoption of a photon

spectral model, detector response matrix, and spectral
deconvolution of each 64 ms interval of the burst under

examination. For our purposes, it is sufficient to assume an
approximately diagonal response matrix for the intensities
and energies used here and utilize the more convenient
count-space data in computing _(L).

To obtain the _b(L) distribution for a given burst, a quad-
ratic background fit is subtracted from the detected time
profile. The resulting burst light curve is then normalized to
the maximum intensity level exhibited during the event.
From this normalized, background-subtracted profile, a

frequency-brightness distribution is obtained from the
0.064 s intensity intervals, indicating the number of times a
given intensity level was observed in the 64 ms time inter-
vals. Time intervals when the background-subtracted inten-
sity is either less than 3 a above background or less than
0.01 times the maximum intensity are not included to avoid
the introduction of noise into the distribution. This fre-

quency distribution is then recast in the form of a distribu-
tion function and normalized to the total amount of time

the burst is observed to have intensity above the threshold
criterion stated previously. In discretized form, therefore,
the normalization for _b(L) can be written as

,I,(L),,_L,= 1, (2)
i

and the resulting _(L) distribution represents the fraction of
the total detection time during which the burst was

observed to have a luminosity between L and L + dL, with
the luminosity normalized to the maximum of the event.

Before investigating the internal luminosity distributions
observed by BATSE, it is illustrative to consider the func-
tions that can be obtained from simple, analytic models to
burst pulse profiles. General features and behaviors found
in the internal luminosity distributions of simple profiles
can then be better understood in the context of the more

complicated physical bursts. We employ the variable I as
the measure of luminosity when dealing with these synthetic
pulse shapes to avoid confusion between these and actual
gamma-ray burst profiles.

2.1. Gaussian Profile

To begin, we shall examine the internal luminosity dis-
tribution function obtained from a Gaussian profile. This
particular profile is modeled as

I(t) = Io exp [- (_t__to)2]2 _2 _1" (3)

Our interest in this shape is for the purposes of illustration,
as its ability to represent the types of time profiles actually
observed from gamma-ray bursts is quite limited.

We identify ta and t, (t_ < t4) as the times when the
intensity of the profile is equal to 0.01 and t2 and t3 (t2 < t3)

as the times when the intensity is equal to 11 . These times
are shown superposed on the profile (3) in Figure 1 where
we have adopted values of I 0 = 1.0, to = 50 units, and
tr = 15 units.

According to the definition of the internal luminosity dis-
tribution,

fo la t2 -- t 1 + t 4 -- t 3.ol_k(l)dl = t4 __ tl (4)

Equation (4) simply indicates the amount of time the profile

is observed to have intensity between 0.01 and 11, normal-
ized to the total time observed above the level 0.01. Since in

this case the time profile is symmetric,

t 2 -- t 1 = t 4 -- t 3 ,

allowing us to rewrite equation (4) as

loa¢(l)dl _ 2(t2 _- t_)
t¢ -- t I

(5)

(6)

To proceed further, we first solve equation (3) for t,
writing it as a function of/, yielding

[ ('ll °'t = -2 a 21n\_o,/3 + to. (7)

We may now use equation (7) in equation (6) to obtain an
expression involving _(I) on the left-hand side and the
intensity I on the right-hand side. Specifically, we obtain

fo l' 2_,(l)dl -
.ol t4 -- tl

× -2 o_ln_)J

- [-2 a21n\_--o } j l (8)
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FIG. 1.--Sample Gaussian pulse profile obtained from eq. (3). Times t 1

and t 4 are shown where the intensity equals 0.0l of the maximum. Simi-

larly, t2 and t3 indicate the times where the intensity is equal to I1.

Finally by differentiation of the preceding equation we
obtain the final result:

1 [-2 a21n(1/lo)] -°'5
_b(I) = -- (9)

t4 -- g 1 I

The measured internal luminosity distribution for the
profile in Figure 1 is shown in Figure 2 as a histogram. The
qJ(1) distribution here (and in all subsequent figures) is pre-
sented in logarithmic space both for clarity and simplicity,
although the discussion to this point has presented the _,(I)
distribution per unit luminosity• The error bars are propa-
gated from the frequency distribution, where we assume
Poisson counting statistics and compute the error bar
simply as the square root of the number of times each inten-
sity interval was sampled from the Gaussian form. Below
the histogram, we have plotted equation (9) as a dot-dashed
curve with the normalization modified to place the curve
below the histogram for clarity. Both the analytical and
measured tp(l) distributions are characterized by a quasi-
power law for low values of I and an upturn in the distribu-
tion at large values of I due to the flat-topped nature of the
Gaussian profile. That the logarithmic slope of the _b(I) dis-

tribution is one measure of the "peakedness" of a given
profile shape is a feature that will be useful in further dis-
cussions.

2.2. An Asymmetric Profile

The preceding profile is a gross oversimplification of
what one actually observes in gamma-ray bursts. Bursts, as
well as the pulses within bursts, display a tremendous range
of morphologies. Some pulses within bursts can be signifi-
cantly spiked, while others may display a more rounded

behavior (see Fishman & Meegan 1995 for a variety of
examples). It is also well known that both bursts and the
pulses within bursts are asymmetric (Link, Epstein, &
Priedhorsky 1993; Nemiroff et al. 1994) in time, with the
characteristic rise time less than the decay time of a pulse•
Having successfully demonstrated the simplest case _k(I)
previously, it is illustrative to further the analysis of the
preceding section utilizing a more complex profile param-
eterization that provides for a variety in the "spikedness" of
the pulses, as well as an overall asymmetry similar to that
observed in nature.

We borrow the parameterization of Norris et al. (1993a,
1993b) and Davis et al. (1993):

l(t)= lo exp [- ('t- t°l_] . (10)
k a_,: /A

In this expression, t o is the time of maximum intensity I 0,
tr,./is the characteristic width of the pulse rise (r) and pulse
decay (f), and v is the "peakedness" parameter. Low values
of v generate pulses that are more strongly spiked, and
larger values of v result in shapes that are more rounded or
level near the maximum.

Figure 3 contains an example of a profile generated using
equation (10), with parameters I o = 1, to = 50, a, = 0.5,

cry = 6.0, and v = 1.0. It is apparent that equation (4) is
valid for this particular profile as well as the previous case;
however, here we cannot make the same simplifying
assumption based on symmetry. It is, however, straightfor-
ward to proceed as before in determining the functional
form for ¢(I) by solving equation (10) for t explicitly and
substituting these results into equation (4). This analysis
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FIG. 2.--Measured internal luminosity distribution ¢(I) from the syn-

thetic Gaussian pulse profile of Fig. 1 (histogram}. Dot-dashed curve, plot of

eq. (9), the analytically derived ¢(I) for this profile shape. The normal-

ization has been offset for clarity.
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FIG. 3.--Sample asymmetric profile obtained from eq. (10), with param-

eters a, = 0.5, _rI = 6.0, v = 1, and I o = 1.0. This more general form allows
for variations in the characteristic rise and decay times, as well as the

"spikedness" of the profile.



374 HORACK & HAKKILA Vol. 479

:f" I

• t:+rjii 'i_

_ .L t: t,!,t :'t

FiG. 4.--Measured internal luminosity distribution for the profile in
Fig. 3 (histogram). Dot-dashed curve, plot of eq. (11), the derived analytical
form of the internal luminosity distribution for this parameterized profile
shape. The normalization is intentionally offset for clarity in the figure.

results in the explicit expression for _b(I):

[_k(l)-cr'+a s 1 --in . (11)
t4 -- t I Iv

In Figure 4, we present the _k(l) distribution measured for
the profile in Figure 3 as a histogram and plot equation (11)
as a dot-dashed line. We again have modified the normal-
ization in equation (11) to separate the curve from the histo-
gram to provide better clarity in the figure.

This distribution is markedly different from the previous
case; most noticeable is the absence of the upturn in _k(l) for
large I that was present in the Gaussian profile. Figure 4
displays a distribution that behaves as a power law of index
-1 for all intensities shown. Inspection of equation (11)
shows that this is a direct result of the value of v = 1 chosen

for this particular example. With v = 1, the exponent is
zero, leaving a simple 1/I dependence.

In the general case of this parameterization, the logarith-
mic slope of the distribution can be written as

[ ]dln_ l d¢¢_ 1 1 + . (12)
d In I _b dl - In (I/Io)3

For v = 1, we again observe the logarithmic slope equal to

- 1 for all I. Thus the example above is a special case. For

very large values of v, the distribution behaves quite differ-
ently. In the limit of large v, one has behavior like

[ '1 .3,¢(I),-,- i + in([tlo) .

This provides a logarithmic slope of approximately -0.8 at
low I and can eventually become positive with increasing I,
allowing the distribution to display an upturn for sufficient-

ly large v and I. As large values of v produce profiles with
more fiat-topped peaks, one expects that the if(l) distribu-
tion should display an upturn in the regions of high inten-
sity, as the profile is observed to spend a proportionally
larger amount of time in this region. Conversely, when v is
very small, one has a very sharp peak. We observe from
equation (12) that small values of v can result in slopes that
are arbitrarily small (steep) with increasing I. Thus in addi-
tion to a possible upturn in the distribution, one can also
have a downturn depending on the value of v. Extremely
sharp time profiles spend proportionally less time near the
peak, so one expects that in these cases the 0(1) distribution
should show diminished activity at large intensities as the
equation predicts. We therefore identify three regimes for
this parameterization, v > 1, v = 1, and v < 1, each of which

results in different behavior at the high-intensity end of the
0(1) distribution.

2.3. The "Real" World

Although more complex than the Gaussian case of § 2.1,
the preceding asymmetric time profile with a variable
peakedness parameter is still quite distant from an accurate
representation of the overall burst profiles observed by
BATSE. Bursts consist of many varied pulses, some of
which can overlap and display different behavior in differ-

ent energy regions. The resulting if(I) distribution will be a
conglomeration of each individual pulse distribution added
together in an incoherent manner. Unfortunately, the com-
bination of just two separate pulses into a single time profile
complicates the analytic approach to _k(1) enormously,
resulting in nontrivial calculations of the _k(l) profile shape.
In many simple cases, an analytic solution cannot be
derived.

However, it is illustrative to consider one additional
simple example before proceeding to look at actual burst

profiles. Figure 5a presents a simple time profile consisting

\\ : L ......

1

FIG. 5a FiG. 5b

FiG. 5.--(a) More complex time profile involving both a peaked and rounded pulse. (b) The internal luminosity distribution measured for this profile.

Although more complex than the previous cases, salient features and characteristics of each individual pulse are still visible in the overall internal luminosity
distribution.
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FIG. 6.--Internal luminosity O(L) distributions for four of the 50 brightest gamma-ray bursts detected by BATSE. Intensity, normalized to the peak of the

burst, is plotted along the x-axis. The quantity _b(L)dL represents the fraction of the total detection time the burst was observed to have intensity (luminosityl
between L and L + dL.

of two overlapping pulses, the second with half the ampli-
tude of the first. Each individual pulse was generated using
the functional form of equation (10), the first with param-
eters to = 30, % = 1, ay = 2.25, and v = 0.5. For the second
pulse, values of to = 50, a r --- 5, a/= 10, and v = 2.5 were
chosen. Thus the profile contains both a "spiked" and a
"flat-topped" pulse profile. The _b(l) distribution measured
for these pulses is shown in Figure 5b.

As expected, the _k(l) distribution is significantly more
complex than either of the distributions obtained from indi-
vidual pulses alone; however, salient features are still identi-
fiable. First, one can still observe the contribution of the

more intense pulse at the high-intensity end of the distribu-
tion. With the brighter peak possessing a small (< 1) value
of v, the anticipated steep logarithmic slope can be observed
for intensities above I ~ 0.45. At low intensities, the dis-

tribution is smooth and not quite power-law like, receiving
contributions in this area from the low-level intensities of

both peaks. Just above a value of I = 0.1, there is an abrupt
increase in the value of _k(I). This is due to the presence of
the interpulse region, where the burst is observed to spend a

larger proportion of time compared to intensities just below
this value. As I increases, we observe the logarithmic slope
of the _k(l) distribution increasing as well, eventually becom-
ing positive between values of I _ 0.35-0.40. This occurs
because of the contribution of the more rounded (large v)

secondary pulse and is similar to the behavior in Figure 2.
The _k(l) distribution then displays an abrupt decrease in
value, as one is now exploring intensities above the
maximum of the secondary pulse. One can therefore
observe both abrupt increases and decreases in the _b(l)
distribution based on the structure of the time profile. The

behavior in the remaining region of large I is dominated by
the spiked nature of the primary pulse, as noted previously.

3. ANALYSIS OF THE 50 BRIGHTEST GAMMA-RAY BURSTS

Having examined the internal luminosity distributions
and their characteristic features found for a variety of syn-
thetic time profile shapes, we now turn to the measurement
of the internal luminosity distribution for actual gamma-ray
bursts. For this analysis, we have examined the 50 brightest
bursts as measured by the 1.024 s peak flux in the BATSE

3B catalog (Meegan et al. 1996). Of these 50 brightest bursts
in the 3B catalog, 46 were usable for computation of _9(L).
For one of the bursts, BATSE trigger No. 2151, the dura-
tion of the event was insufficient to obtain a reasonable

number of data points in computing tp(L). Two others, No.
543 and No. 999, suffered from data problems, and an addi-
tional burst, No. 142, occurred during a magnetospheric
electron precipitation event (e.g., Horack et al. 1991), so that
the background was not sufficiently well behaved to
perform a reliable analysis.
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TABLE 1

SUMMARY DATA OBTAINED FROM THE ¢(L) DISTRIBUTIONS FOR THE 50 BRIGHTEST BATSE
GAr, OlA-RAY Btrgs'rs

Trigger a X,2 v (L) 6((L)) HR 6(HR) Tgo 6(T9o )

2083 1.175 2.45 38 0.166 0.012 3.38 0.01 15.2 0.2

1609 1.200 4.16 18 0.156 0.018 3.09 0.02 12.7 3.2

143 1.225 2.16 38 0.164 0.012 6.01 0.04 50.8 0.2

2831 1.575 11.03 38 0.083 0.003 3.83 0.01 150.0 0.0

1541 1.200 4.76 38 0.152 0.008 3.98 0.02 26.2 0.2

249 1.400 6.70 38 0.141 0.007 3.47 0.01 28.5 0.9

1085 1.075 7.32 18 0.239 0.013 2.20 0.01 19.2 0.2

3057 1.400 10.27 38 0.199 0.007 5.26 0.01 34.9 0.5
2329 1.150 6.60 38 0.166 0.008 4.83 0.02 22.1 0.1

1625 1.075 3.06 38 0.188 0.011 4.65 0.02 16.1 0.1
1473 1.025 9.85 36 0.205 0.010 4.06 0.02
2798 1.675 7.72 34 0.147 0.006 4.99 0.03 3"7.'6 0.1"

2431 1.500 1.52 18 0.135 0.023 2.83 0.04 2,78 0.13

2611 1.875 1.89 18 0.126 0.023 4.70 0.08 12.2 0.1

2537 0.500 7.92 18 0.289 0.024 2.28 0.02 4.80 0.09

2067 1.275 11.72 8 0.231 0.011 4.58 0.02 30.8 0.5

1663 1.225 12.23 33 0.256 0.010 5.43 0.03 36.0 1.0

3067 1.925 5.12 34 0.126 0.008 3.50 0.03 67.0 1.0

1886 1.325 4.82 33 0.291 0.019 6.33 0.05 276.0 2.0

1711 0.875 1.84 32 0.269 0.027 5.24 0.06 5.95 0.14

451 1.250 2.31 15 0.263 0.017 1.67 0.02 15.2 2.4

2856 1.625 40.28 26 0.143 0.003 7.34 0.03 120.0 0.0

3138 1.450 5.62 32 0.216 0.022 2.78 0.04 5.18 0.09

2953 1.225 1.67 14 0.210 0.014 3.40 0.03 16.8 0.8

219 1.500 3.35 33 0.122 0.007 2.50 0.03 29.7 1.4

3128 1.075 3.27 28 0.278 0.009 5.08 0.03 32.2 0.1

2156 1.575 22.34 32 0.148 0.004 4.29 0.02 154.0 0.0
1025 0.875 0.79 14 0.265 0.036 2.10 0.05 2.62 0.14

2994 1.725 2.56 30 0.117 0.006 6.25 0.09 48.6 3.9
1121 1.350 3.45 28 0.220 0.010 2.75 0.03
1440 1.300 1.44 30 0.200 0.017 4.17 0.07 24.'4 1'.()"

1709 0.625 2.82 13 0.367 0.033 2.62 0.03 3.46 0.23

105 1.325 3.44 14 0.210 0.022 1.55 0.14 5.18 0.18

2090 1.200 2.06 13 0.237 0.015 3.24 0.04 38.1 0.1

1157 1.600 1.34 29 0.179 0.013 3.45 0.04 171.0 2.0

3115 1.500 3.37 27 0.213 0.013 5.16 0.09 45.3 0.1

1141 0.725 4.47 28 0.335 0.014 2.46 0.02 20.1 0.5

1122 1.400 4.34 31 0.183 0.009 3.19 0.03 18.8 1.0

2855 1.475 13.25 27 0.247 0.008 6.51 0.05 42.5 1.8

1484 2.450 2.42 14 0.118 0.016 2.77 0.06 ......

2533 1.200 23.26 27 0.269 0.005 4.83 0.03 74.3 5.3
2894 0.800 2.71 12 0.328 0.032 3.20 0.07 3.78 0.41

2797 1.075 4.31 26 0.292 0.021 3.65 0.06 8.83 0.20

1664 0.725 2.23 12 0.351 0.034 1.72 0.04 3.52 1.3

2891 1.650 2.03 26 0.175 0.008 5.37 0.07 33.5 0.5

1425 1.100 1.67 27 0.233 0.017 1.62 0.03 10.4 0.7

Examples of four _O(L) distributions are shown in Figure
6. The error bars are propagated from the frequency dis-
tribution, where we assume Poisson counting statistics and

compute the error bar simply as the square root of the
number of times each intensity interval was sampled. The

general features of the _b(L) functions shown in Figure 6 are
found in all the bursts we have examined. Specifically, each
of the _b(L) functions are quasi-power-law like and
decrease in value with increased intensity, demonstrating

that the bursts spend proportionally more time at low lumi-
nosity levels than at high luminosity levels.

A variety of statistical measurements are made on each of
the _k(L) functions obtained. Among these, a best-fit power-
law exponent ct is determined, based on minimization of the
reduced _2 statistic, in order to obtain a general description
of the overall shape of the _b(L) function. We also compute

the integral moments of the if(L) distribution. The moments
both offer a more complete description of the shape of the
distribution and are useful in comparing the obtained if(L)
function with distributions of peak luminosities _b(L) that

are compatible with the observed brightness distribution of
bursts. Following the computation and analyses of if(L)
for the bursts individually, we then search the resulting
data set for correlations among the different data values
in an attempt to learn more about the behavior of the
bursts.

Table 1 summarizes some of these computed data. Each
of the 46 usable BATSE bursts are listed, ranked by

decreasing intensity. The best-fit power-law index _t to the
_(L) distribution is shown, along with the reduced X2 and
number of degrees of freedom in the fit. The average (L) of
the O(L) distribution, as well as the error in the mean, is also
displayed in the table. Last, we also have incorporated data
from the BATSE 3B catalog (Meegan et al. 1996), listing
both the hardness ratio (HR) and its uncertainty, as well as
the computed value of Tgo (e.g., Koshut et al. 1996) and its
uncertainty, which is a measure of the burst duration.
Several of the bursts listed in Table 1 do not have corre-

sponding T9o values in the BATSE 3B catalog; thus no data
appear for these bursts.
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4. CORRELATIONS IN THE DATA

The data in Table 1 show that a significant majority of
the _k(L) functions found for the gamma-ray bursts are
poorly represented by a powerlaw in the g 2 sense.
However, despite these large values for the reduced X z sta-
tistic, the best-fit power-law index _ can be used as a repre-
sentative description of the average logarithmic slope of the
internal luminosity function over the range of brightness
studied, similar to the use of a hardness ratio to describe the
general behavior of a burst's photon spectrum.

To search for correlations in the data, we employ the
Spearman rank-order correlation test (e.g., Press et al.
1989). When applied, the nonparametric Spearman test
returns a correlation value rs and the probability P(G, N)
that N pairs of uncorrelated variables would yield a value of
re equally or more discrepant than the one obtained from
the data set. A weakness of the method is that it does not

provide information on the functional form of any possible
correlation between variables, only the probability that a
correlation of some kind is present. It also offers no indica-
tion for the origin of the correlation, whether due to an
actual physical relationship between the variables or some
systematic effect in the analysis.

A summary of the parameters that we have investigated
and their corresponding r_ and P(r, N) values are shown in
Table 2. A cursory inspection of the table shows several
very small values of P(r, N), indicating a high probability
for the presence of a correlation. We believe that two of
these, in particular, the correlations between the average
luminosity (L) and the burst intensity, and between (L)
and the best-fit exponent _, are systematic.

For the former, as burst intensity decreases, the likeli-
hood increases that 0.01 times the maximum intensity will
be less than 3 a above the fitted background. In this case,
the lower limit on the measured _,(L) will not be 0.01 but
some larger number. For a given shape of _b(L), as the lower
limit of the measured distribution increases, the average
must also increase as the upper limit to the distribution is
fixed at a value of 1.0.

The latter correlation has a higher significance. The
Spearman re value for these data is -0.751, corresponding
to a probability P(G, N) of 1.79 × 10 -9, a strong indication
of correlation between the data sets. If we consider a nor-

malized power-law functional form over a fixed intensity
range, an increase in the power-law exponent results in a

= !

IK

o_ • • •%

I

Fro. 7.--Filled circles, scatter plot of the average of the best-fit expo-

nent _ vs. the average (L) of the _b(L)distribution. Dashed lines, computed

relationships from normalized power-law forms with varying Lm_. and a

fixed L=a _ = 1.0. Low Spearman rank-order probability P(G, N) indicates

a very high probability for a correlation between these two variables, as

expected.

steepening of the shape of _p(L), which produces a lower
value for the average (L).

In Figure 7, we present a scatter plot of the best-fit expo-
nent ct versus (L). The data are plotted as filled circles. The
dashed lines overplotted on the figure are curves of ct versus
(L) calculated for power-law functional forms with differ-
ent values of Lmi _, ranging from 0.01 (lower left curve) to
0.04 (upper right curve) in steps of 0.01, and a fixed Lm_ _ =

1.0. We observe that the data points are closely located
along the theoretical curves. That the measured _(L) dis-
tribution functions are not exact power laws has an effect
on the location of the points relative to these curves,
producing some scatter. However, the general agreement
between the data and the curves offers validation of the

first-order power-law description of the _,(L) functions used
in this analysis.

4.1. Best-Fit Exponent ct versus Tgo

Having obtained the values of T9o for these bursts from
the BATSE 3B catalog (Meegan et al. 1996), we have
plotted these values against the best-fit power-law index ct.
These data are shown in Figure 8. Those bursts in Table 1
that do not have Tgo values are omitted from this portion of
the analysis. Application of the Spearman test to the data in

TABLE 2

VALUES OF r, AND P(G, IV) OBTAINED FROM APPLICATION OF THE SPEARMAN RANK-ORDER TEST

P(G, N)

r_

VARIABLE Intensity T90 Best-Fit Exponent 3B Hardness Ratio (L)

Intensity 6.22 × l0 -t 9.12 × 10 -_ 2.16 x 10 -t 3.38 × 10 -3
0.0773 0.1664 0.1861 - 0.4832

Tgo 6.22 x 10 -1 4.71 × 10 -s 1.32 × 10 -6 1.60 x 10 2
0.0773 0.5792 0.6622 - 0.3652

Best-Fit Exponent 9.12 x 10 -t 4.71 x 10 -5 6.58 x 10 -a 1.79 x I0 9
0.1664 0.5792 0.4080 --0.7513

3B Hardness Ratio 2.16 x 10 t 1.32 x 10 -6 6.58 x 10 -3 1.56 × 10 -t

0.1861 0.6622 0.4080 -- 0.2127

(L) 3.38 × 10 -_ 1.60 × 10 -2 1.79 × 10 -9 1.56 × 10 -1
--0.4832 --0.3652 --0.7513 --0.2127

NOTE.--The Spearman rank-order test was applied to various pairs of data sets obtained from both the computation

of ¢(L) and the BATSE 3B catalog.
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FIG. 8.--Scatter plot of the burst duration as measured by Tgofrom the
BATSE 3B catalog vs. the best-fit power-law exponent _. Longer bursts
tend to display larger power-law exponents and spend proportionally
more time emitting at lower luminosities. These data indicate that the
shorter bursts in the data set are not simply scaled-down versions of the
longer bursts but instead display a different emission behavior.

Figure 8 yields a value rs = 0.579 and a corresponding P(rs,
N) = 4.71 x 10 -5, thereby indicating that a correlation is
highly probable.

The data in Figure 8 show that longer bursts (as indicated
by larger values of Tgo) tend generally to have larger best-fit
power-law exponents _; i.e., their particular _k(L) functions
are steeper. Thus we observe that these longer bursts spend

proportionally more time emitting energy at lower lumi-
nosities. The time profiles of short bursts are therefore not
simply shortened versions of longer bursts; there is a funda-
mental difference in their emission behavior.

The relationship in Figure 8 between T9o and the shape of
the _k(L) distribution as characterized by the best-fit expo-
nent ccmay be explained in a variety of ways. For example,
in the context of Shaviv & Dar (1996), at a given distance,
bursts occurring in regions with a higher density of back-
ground starlight due to higher stellar volume densities may
produce a brighter and longer-lived envelope of emission,
i.e., a longer burst. The relative enhancement of the
envelope, less intense than the peaks within the burst, would
result in an overall profile that spends proportionally more
time at lower luminosities.

Alternatively, Figure 8 is consistent with the hypothesis
that gamma-ray bursts have an energy budget that is
approximately constant for all bursts. An constant energy
reservoir for all events may not be unreasonable for models
involving neutron star binary systems or accretion-induced
collapse of a neutron star or white dwarf (e.g., Eichler et al.
1989; Woosley 1992) because of the narrow range of masses
and gravitational binding energies found in these systems.
Under this assumption, bursts that spend their energy less
rapidly can occur over a greater length of time, while the
more spendthrift bursts deplete their energy source in a
shorter time span. These are obviously not the only possible
explanations for the relationship found here between the

best-fit exponent to the _,(L) distribution and the duration
as measured by Tgo; however, they illustrate that this
behavior can be explained in the context of current burst
models.

4.2. Best-Fit Exponent c¢versus Hardness Ratio

We have also investigated the relationship between the
best-fit exponent a and the hardness ratio as computed in

the BATSE 3B catalog (Meegan et al. 1996). The hardness
ratio is calculated in the 3B catalog by taking the total burst
fluence (ergs cm -z) in the energy range 100-300 keV and
dividing it by the fluence in the energy range 50-100 keV.
Figure 9 shows a plot of the best-fit exponent a as a function
of the 3B hardness ratio. Again, we find some statistical
evidence for a correlation between these two data sets, as
the Spearman test returns values of rs = 0.408 and P(r_,
N) = 6.58 x 10 -3

We observe in Figure 9 that bursts with large power-law
exponents a tend to have harder overall spectra than those
with smaller power-law exponents. Therefore, for the 50
brightest bursts observed by BATSE, those that spend a
proportionally larger amount of time with luminosity near
the peak luminosity (ct small) tend to possess fluence spectra
with a larger proportion of low-energy photons (small hard-
ness ratio). Conversely, those bursts spending a proportion-
ally smaller amount of time emitting photons at a rate near
the peak luminosity have fluence spectra with a generally
larger proportion of high-energy photons (larger hardness
ratio). With a Spearman probability slightly less than one
chance in 100, the possibility of a statistical fluctuation
cannot be ignored in this case. We therefore have chosen to
forgo extensive speculation over possible physical causes.

4.3. Tgo versus 3B Hardness Ratio

In the preceding paragraphs we have shown a high prob-
ability for correlations between the best-fit exponent _ and
Tgo and to a slightly lesser extent between the best-fit expo-
nent and the 3B hardness ratio. It is therefore possible that
one might find a correlation between Tgo and hardness
ratio. Indeed, in the literature one can find several examples
where such a correlation has been noted in the BATSE data

for the ensemble of detected bursts (e.g., Kouveliotou et al.
1993). For the overall BATSE data set, one finds that the
shorter bursts tend to have harder fluence spectra.

Figure 10 shows a scatter plot of Tgo versus hardness
ratio for the 50 brightest bursts in the BATSE 3B catalog. It
is important to stress that all the data contained in Figure
10 are simply extracted from the BATSE catalog and are
independent of the analysis of O(L). A Spearman rank-order
test on these data results in values of rs = 0.662 and P(r_,
N) = 1.32 x 10 -6, significant evidence for a correlation.
However, close inspection of the figure reveals that the
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Fro. 9.--Scatter plot of the best-fit exponent ct vs. the fluence hardness
ratio from the BATSE 3B catalog. Those bursts exhibiting softer spectra
have generally smaller values of ct, spending proportionally more time at
higher luminosities than those bursts with hard spectra.
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FIG. 10.--Scatter plot of the burst duration as measured by 7"9o vs. the

hardness ratio from the 3B catalog. These data are obtained from the burst

catalog, independent of the _k(L) analyses. The low value of P(r s, N) indi-

cates a high probability for correlation among these two variables. Indeed,
the apparent correlation is opposite to the hardness-duration correlation

for the entire burst ensemble reported elsewhere in the literature.

FIG. ll.--Scatter plot of burst duration as measured by T9o vs. the

hardness ratio from the 3B catalog for the brightest bursts measured on the

0.064 s peak flux timescale. The inclusion of short bursts with durations

less than _ 1 second and hard spectra washes out the correlation found in

Fig. 10 for the same variables using bursts ranked by their 1.024 s peak
fluxes.

correlation for the 50 brightest bursts is opposite to that of
the entire burst ensemble as reported by Kouveliotou et al.
(1993) and others. There is no general intensity trend among
the points shown in Figure 5, and Table 2 indicates that
intensity is unlikely to be correlated with either Tgo or hard-
ness ratio in this limited burst sample.

This correlation has also been independently discovered
in the BATSE data and seen in gamma-ray burst data
obtained by the Phebus Experiment (Dezalay et al. 1996),
strong evidence that the correlation is indeed real. This
behavior is also consistent with the results presented in the
previous two subsections, as bursts with large values of T9o
were shown to spend a proportionally larger amount of
time at low brightnesses (§ 4.1), and bursts that spend pro-
portionally larger amounts of time at low brightnesses were
found to display harder fluence spectra (§ 4.2). One there-
fore expects to find that for the bursts employed here, those
with harder fluence spectra will also show larger values of
T9o, as is the case with the data shown in Figure 10.

For the analysis, we have selected bursts based on their
1.024 s peak fluxes. Bursts with durations significantly less
than 1.024 s can have their fluxes underestimated by this
measure of brightness, as the time interval will also include
background, as well as source, emission, time. Thus by
selecting bursts based on this criteria, one may introduce a
bias against bursts whose duration is less than about 1
second. It is known (e.g., Fishman et al. 1994) that the dis-
tribution of log Tgo is bimodal, with a clear separation near
Tgo _ 2 s. Therefore by using the 1.024 s brightness
measure, we have selected against bursts belonging to the
leftward (short) mode of the log Tgo distribution. These
short bursts can have very hard spectra.

Figure 11 demonstrates how the inclusion of short bursts
affects the correlation found in Figure 10. In this figure we
plot the value of Tgo versus 3B catalog hardness for the 50
brightest bursts on the 0.064 s timescale, where data were
available. Visual comparison of the two figures shows that
many bursts are common to both plots. However, in Figure
11, the addition of bursts that are bright on 0.064 s peak flux
scales introduces bursts with durations significantly shorter
than 1 s and with hardness ratios that can be quite large.
These bursts are found in the leftward mode of the bimodal

log Tgo distribution (e.g., Fishman et al. 1994). The inclusion
of bursts from the lower portion of the log Tgo distribution
effectively washes out the correlation found for the bursts in
Figure 10, as a Spearman test results in values ofr s = 0.097
and P(r_, N) = 5.28 x 10- 1

The use of bursts ranked by intensity on shorter time-
scales removes the correlative effect found in Figure 10. On
the one hand, this may indicate that a selection bias related
to the definition of peak flux is a contributing factor to the
high probability for correlation found in Figure 10. On the
other hand, it may also indicate different signature from
bursts in the two different modes of the log T9o distribution
based on fundamental differences in the properties of bursts
found in these two areas of the log Tg0 distribution. From
this viewpoint, the behavior found in Figure 10 is an intrin-
sic property of the events themselves. Regardless, bright
bursts with durations in excess of _2 seconds have a

relationship between their hardness ratios and durations
which is opposite to that of the entire BATSE gamma-ray
burst ensemble.

5. DISCUSSION OF SYSTEMATICS

The physical implications and/or underlying causes of
these apparent correlations in the data set are not yet fully
understood. We have invested some level of effort to investi-

gate the possibility that any correlations [P(r s, N) of order
10 .3 or less] are not due to systematic or selection effects
from the analysis or the BATSE experiment. Of the corre-
lations found in the data set, we believe that only the low

P(r s, N) values obtained in comparing (L) to the best-fit
exponent e and in comparing (L) to the burst intensity
have nonphysical origins. It is possible that these others
also have nonphysical origins; however, we have not been
able to find such evidence. Within the use of the 1.024 s

brightness scale, we believe there are no lingering intensity-
dependent selection biases or systematic effects, as the burst
intensities appear uncorrelated with any of the computed
parameters aside from the understood variation with (L)
discussed above.

Although the analysis here utilizes the 1.024 s timescale
for intensity ranking, we have also performed less detailed
analyses by ranking bursts according to their 0.256 and
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0.064s peakfluxes.This was done to investigate any
changes to the correlations found with the 1.024 s defini-
tion. As there is significant overlap between the three sets of
50 brightest bursts, the correlations found in Table 2 are
present to a slightly greater or lesser quantitative degree
regardless of the defining timescale for the peak flux.

The use of the 0.064 s DISCSC data offers the best avail-

able time resolution over the lifetime of the entire burst,

thereby providing the best ability to resolve the short time-
scale structure that contributes to the _,(L) distribution. It
should be obvious that at some point, the temporal binning
of the burst profile wilt effect the computed _,(L), as in the
extreme case where the burst is entirely contained in one
time bin. The computed _,(L) in this case would be rep-
resented by a delta function located at the normalized inten-
sity of 1.0. We have not been able to discern a significant
systematic change in the computed _,(L) or its properties
using a more coarse time resolution, provided that the tem-
poral structure of the burst profile is still well resolved on
these larger timescales.

The bursts used in this analysis have very high signal-to-
noise ratio in the BATSE data. Partly for this reason, we
have found that changing the intervals over which the back-
ground model was computed has little to no effect on either
the resulting _b(L) distribution or its relevant parameters,
provided that one is reasonable in choosing both the width
and location of the intervals for the quadratic fit. The use of
a 3 tr lower limit has proven effective in removing noise
from the distribution. In general, the presence of a noise
contribution to the _b(L) distribution is easily distinguished,
as it occurs at the low end of the distribution and is charac-

terized by a slope significantly steeper than that observed
over the remaining _b(L) dynamic range•

6. CONCLUSIONS

We have presented the first results from our study of the
internal distribution of luminosity within bright gamma-ray
bursts. The breadth of the _,(L) function far exceeds the
range of peak luminosity observed among bright bursts (cf.

Horack et al. 1994)• The general shape of the luminosity
distribution is found to be correlated with the burst dura-

tion as measured by Tgo. The correlation between the dura-
tion and the shape of the _b(L) function is qualitatively
consistent, e.g., with the recent burst model of Shaviv & Dar
(1996) or with the hypothesis that the energy reservoir is
nearly constant for all bursts• However, these are merely
two illustrations of how the behavior might be explained,
and, indeed, other models may also offer suitable explana-

tions. Regardless of the responsible mechanism, these
analyses have shown that short intense bursts are not

simply contracted versions of longer bright bursts. For
these bright bursts, the shape of the internal luminosity
distribution also appears possibly to be correlated with the
fluence hardness ratio found in the BATSE 3B catalog
(Meegan et al. 1996).

The existence of correlations between duration and the

logarithmic slope of _,(L) and between hardness ratio and
the _,(L) logarithmic slope has led to the discovery of a
correlation between hardness ratio and duration. Corre-

lations between these two parameters have been reported
before (e.g., Kouveliotou et al. 1993) for the entire burst
ensemble. The correlation found here is indeed strong, with
a Spearman probability of P(r s, N) of 1.32 x 10-6 that two
uncorrelated data sets would yield an equally or more dis-
parate rs value. However, for the 50 brightest bursts on the
1.024 s peak flux timescale in the BATSE 3B catalog, the
sense of the correlation between these two parameters is
opposite to that found for the entire burst ensemble. This
result has also been found independently in the BATSE
data by Dezalay et al. (1996) and confirmed in their analysis
of data from the Phebus experiment. The correlation is not
present if the selection of bright bursts is based on their
0.064 s peak fluxes, primarily because of the inclusion of
short (Tgo < 1 s) bursts that have very large hardness ratios•

A full understanding of the physical implications of these
phenomenological burst properties is not yet realizable and
will require significant additional in-depth study. We are
proceeding with further detailed analyses. These include the
extension to lower intensities, the application of self-
organizing criticality analysis methods, and separation of
the bursts based on the presence of emission above 300 keV,
which has been found to yield one set of bursts whose inten-
sity distribution is consistent with homogeneity and one set
with a deviation from homogeneity more significant than
that found in the overall population (e.g., Pendleton et al.
1996).
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